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The lattice-Boltzmann method (LBM) is used to carry out a direct numerical simula-
tion (DNS) of grid-generated turbulence with the view to improve comparison between
experimental and numerical results on approximate isotropic turbulence. The grid is
made up of four by four floating flat square elements in an aligned arrangement.
The Reynolds number based on the Taylor microscale is about 40 at a distance of
70 times the separation between the elements downstream of the grid; this value is
comparable to that of many experiments.

While the results compare relatively well with existing experimental data on grid
turbulence (grid made up of bars), they highlight the importance of the mesh
resolution of the simulation and computational domain size in the decay of turbulence.
For example, while a power-law decay could be identified, at least over a short distance,
its decay exponent proves to be difficult to determine with good accuracy. This points
out the need for simulations (and perhaps experiments too) where all scales are
properly solved before conclusions can be drawn.

1. Introduction
Homogeneous and isotropic turbulence is the simplest form of turbulence, and

is experimentally studied when generated by a grid, where a fluid flows uniformly
through a grid, usually made of either square or round vertical and horizontal bars.
The grid is characterized by the diameter of the bars, D, and their spacing, M , and/or
the solidity, σ . The flow parameters governing the turbulence are the mesh and Taylor-
microscale turbulence Reynolds numbers, RM (= U0M/ν) and Rλ(= uλ/ν; the latter is
sometimes called the turbulence Reynolds number), respectively. In these expressions,
U0 is the mean velocity, ν is the kinematic viscosity of the fluid, u a velocity scale
characteristic of turbulence, and λ the Taylor longitudinal microscale. Apart from
the fact that grid-generated turbulence is only in an approximately isotropic state, as
all studies have shown, the question of the universality of turbulence in such a flow
arises as the initial conditions may affect its decay (George et al. 1992; George 2001).
While an experiment is currently in progress to investigate these latter effects (Lavoie
et al . 2005; Lavoie, Antonia & Djenidi 2006), it is experimentally impossible to study
all possible grid geometries. It is clear that only direct numerical simulation (DNS)
can help in this task.

So far, DNS of isotropic turbulence has been carried out in a cubic box of side L,
with periodic conditions in the three directions, and for either decaying or forced tur-
bulence. While the use of a periodic cubic box improves the establishment of an homo-
geneous and isotropic state (the ideal would be to carry out DNS in an unbounded
and non-periodic domain), the simulations are not problem free. Decaying turbulence
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is generated with an initial spectrum and the DNS solves for the subsequent decay.
Not does only this procedure generate relatively low values of Rλ, but it may also
raise the question of the choice of the initial spectrum form and its effect on the
decay of the turbulence. Larger Rλ can be achieved when a (random) forcing term is
introduced into the Navier–Stokes equations; turbulence is maintained and reaches
a steady state. Unfortunately in this case, the results are dependent on the statistics
of the forcing. It should be pointed out that forced turbulence may not be relevant
to the problem of decaying turbulence in the sense that the term dE(k, t)/dt (where
E(k, t) is the turbulence energy, k is the wavenumber and t the time) is statistically
zero in the energy balance equation when turbulence is forced. Since the focus here is
on the decaying turbulence, we will not discuss further the case of forced turbulence.

Comparing results between box turbulence and grid-generated turbulence may not
be appropriate because of the different types of turbulence generation. In that respect,
it would be better to have numerical and experimental data on turbulence generated in
a similar fashion. Thus recent experimental attempts to generated isotropic turbulence
in a box (Birouk, Sarh & Gokalp 2003; Hwang & Eaton 2003) are interesting.
However, the effects of the initial conditions may still be of concern: while turbulence
spectra are used to initialize the DNS, fans or jets are utilized to generate turbulence
in the box experiment. This may be a source of discrepancies when comparing the
results. In that respect, DNS of grid-generated turbulence where the grid is included
in the computation domain (to generate turbulence) seems to be appropriate. Such
simulations would make the comparison of the results between computation and
measurements more relevant. Note that the issue raised since George’s (1992) work as
to whether initial conditions can persist in turbulence is yet to be properly addressed.
Such an issue concerns both DNS and experiments.

There is currently no reported DNS of grid-generated turbulence, whether the grid is
included or not in the computational domain, for direct comparison with experimental
results. Thus, this paper reports the first DNS of grid-generated turbulence and an
exploratory study. The DNS is carried out through the lattice-Boltzmann method
(LBM) rather then solving the Navier–Stokes equations and the reasons for this are
given in § 2 where the numerical procedure is detailed. Results are presented and
discussed in § 3.

2. Numerical procedure
2.1. The lattice-Boltzmann method

The grid-generated turbulence is simulated using the lattice-Boltzmann method, which
is based on kinetic theory. Rather than solving the governing fluid equations (Navier–
Stokes equations), the LBM solves the Boltzmann equation on a lattice. The basic idea
of the LBM is to construct a simplified kinetic model that incorporates the essential
physics of microscopic average properties, which obey the desired (macroscopic)
Navier–Stokes equations (Frisch, Hasslacher & Pomeau 1984). With a sufficient
amount of symmetry of the lattice, the LBM implicitly solves these equations with
second-order accuracy. For the present calculations, each computational node consists
of a three-dimensional lattice composed of 18 moving particles and a rest particle
(lattice model D3Q19, figure 1). The spacings in the three directions between each
node are �x, �y, and �z.

The Boltzmann equation is discretized on that lattice and results in the lattice-
Boltzmann equation, which governs the time and space variations of the single-particle
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Figure 1. D3Q19 square lattice model.

distribution fi(x, t) at the lattice site x:

fi(x + ei�t, t + �t) − fi(x, t) = −�t

τ
(fi(x, t) − f

eq
i (x, t)), i = 0, 1, . . . , 18, (2.1)

where τ is the relaxation time, �t the time step, ei ( = �x/�t) is the particle velocity
in the i-direction and f

eq
i is the equilibrium single-particle distribution:

f
eq
i = ρωi

(
1 + 3(ei · u) + 9

2
(ei · u)2 − 3

2
u2

)
(2.2)

where ρ (=
∑

i fi) is the fluid density, u (ρu =
∑

i fiei) is the local fluid velocity and
ωi are the corresponding weights (ωi =1/3 for i = 0, 1/18 for i =1 to 6, and 1/36
for i = 7 to 18; i = 0 corresponds to the rest particle in the centre of the cubic lattice,
i = 1, . . . , 6, correspond to the particles on the axis aligned with x, y and z, and
i = 7 . . . , 18, are related to the particles on the diagonal directions.) The relaxation
time is related to the kinematic viscosity of the fluid via the relation

ν =
2τ − 1

6
. (2.3)

In the above equations �t = �x = �y = �z = 1. With this choice, |ei | =1, for i = 1 to

6, and
√

2 for i = 7 to 18; note that |e0| =0, and the dimensional variables such as,
u, ν, and ρ are expressed in lattice units. Note that ν is estimated once the Reynolds
number is fixed (ν = U0M/RM ). The relation between the lattice units and the real
dimensions can be obtained by writing LLBM = N × �xLBM and Lreal =N × �xreal ,
which yields �xreal = (Lreal/LLBM )�xLBM where LLBM and �xLBM are a length scale
and the space step in lattice units and Lreal and �xreal are a length scale and the
space step in real dimensions; N is the number of mesh points of in the x-direction.

The left-hand side of (2.1) is the so-called streaming operation, which means that
the particles move to the nearest neighbours in their velocity directions (i.e. they
radiate from the centre of the lattice in their velocity direction). The right-hand side is
the collision term, here modelled by the BGK collision operator, which describes the
redistribution of the particles at each node (for more detail see, for example, Chen &
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Figure 2. Sketch (not to scale) of the computational domain with the grid.

Doolen 1998). Thus (2.1) is solved according to these two operations: collision and
streaming. The collision step is described by

f new
i (x, t) = fi(x, t) − �t

τ
(fi(x, t) − f

eq
i (x, t)), (2.4)

where the f
eq
i are calculated using (2.2). The streaming is described by

fi(x + ei�t, t + �t) = f new
i (x, t). (2.5)

The collisions are entirely local, making the LBM efficiently parallelized. At time t ,
the particle distributions are updated based on (2.4); then, at time t +�t , the particles
propagate according to (2.5).

The choice of the LBM over the classical resolution of the Navier–Stokes equations
for the present simulations was motivated by its two important and practical
advantages: (i) extreme ease of implementation of complex solid surfaces, and (ii) the
local nature of the collision renders the parallelization of any LBM code quite natural
and simple.

2.2. The computational details

The computational uniform Cartesian mesh consists of 690 × 73 × 73 mesh points
(figure 2) with �x = �y = �z =1 (x is the longitudinal direction and y and z the
lateral directions). The turbulence-generating grid (placed at the x-node of 50) is
made up of 4 × 4 floating flat square elements in an aligned arrangement (figure 2).
Each element is represented by 9 × 9 mesh points and the spacing (M) between the
elements is 9 mesh points, yielding a grid solidity of 0.25. The downstream distance
extends to x/M =71, where the origin of x is taken at the grid location. Note that the
same distance would require a far too large number of mesh points if a turbulence-
generating grid with the equivalent solidity made of bars were to be used. This is the
main reason why the square elements were chosen.

Periodic conditions are applied in the y- and z-directions. At the inlet a uniform
velocity (U0 = 0.05, and V0 = W0 = 0) is imposed, and a zero gradient is applied at the
outlet; a convective boundary condition was also tried at the outlet and no significant
difference was observed in the results. To simulate the no-slip condition at the grid
elements, a bounce-back boundary is used; when a particle reaches the wall it is
reflected back in the direction from which it arrived.
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The Reynolds number, RM , is about 1600. This is a relatively small value, which
allows a reasonably good grid resolution, varying from about 4η at x/M = 20 to
2η at x/M = 60 where η is the Kolmogorov length scale (the various scales will be
discussed further later). It should be noted the small value of RM requires caution
when discussing the results; when RM is low the condition for incompressibility is still
satisfied in the present simulation as the Mach number U/c = 0.028 (c is the speed of
sound and is equal to 1/

√
3 in lattice units for the present lattice molecule).

In order to reduce the transient period, a noise was superimposed on the initial
velocity for a short time. The ‘steady’ state solution is obtained after 10 000 iterations.
After only the 30 000th iteration is the first velocity field saved. Subsequently, 74
velocity fields are recorded, each separated by 1000 iterations (about five times D/U ,
where D is the element size) to ensure that two consecutive fields are uncorrelated.

Preliminary calculation revealed that instabilities occured where the magnitude of
the local strain rate

Παβ =
1

2

(
∂uα

∂xβ

+
∂uβ

∂xα

)
=

∑
ı

eiαeiβ

(
fi − f

eq
i

)
(2.6)

is large. The instabilities occurred mainly around the turbulence-generating grid
elements. To help dissipate these instabilities, a large-eddy simulation (LES) scheme
is introduced:

νtotal = ν + νt , (2.7)

where νt is the turbulent viscosity. The Smagorinsky scheme is used in the present
simulation. Thus, following Hou et al . (1996), we have

νtotal = ν + (C�)2|S| (2.8)

with C =0.1, �= �x and

|S| =

√
ν2 + 18(C�)2(ΠijΠij )1/2 − ν

6(C�)2)
. (2.9)

In terms of the time relaxation the LES yields

τtotal = 3(ν2 + (C�)2)|S|) + 1
2
. (2.10)

It is important to emphasize that since the LES is used merely as a dissipative scheme
for the simulations, no attempt is made to investigate various LES models and their
effects on the simulations. Furthemore, since the LES acts at a subgrid level less than
�x, it is believed that the LES model should not significantly change the results
concerning motions whose scales are larger than a few times the Kolmogorov length
scale.

The calculations were carried out on a dual processor (2 × 2.4 GHz) HP workstation.
The collision and streaming steps were parallelized using the OpenMP procedure.
During these steps, each processor worked on half the computational domain.

3. Results
3.1. Numerical visualizations

Figures 3(a) and 3(b) show the velocity fields in the (x, y)- and (x, z)-planes for
0 < x/M < 20 behind two perpendicular rows of grid elements (figure 3(c) shows the
same field as in figure 3(b) but with the mean velocity subtracted). For comparison,
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Figure 3. Velocity field behind the grid. (a) (x, y)-plane; (b) (x, z)-plane; (c) (x, z)-plane and
with the mean velocity subtracted. The inset in (a) is taken from (Lavoie et al . 2006).
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Figure 4. Velocity field behind the grid in the (z, y)-plane. (a) x/M = 5; (b) x/M = 20;
(c) x/M = 40; (d) x/M = 60.

the inset on figure 3(a) shows a flow visualization sequence taken behind a bi-planar
grid (vertical and horizontal bars, M = 4D), visible on the left side, made of square
bars. The flow visualization was performed in a small water tunnel at RM = 350
(Lavoie et al . 2006). The visual field covers the region 0<x/M < 3 − 4.

There is a similarity between the calculated velocity fields and the picture, even
though the grid geometry differs between them. Coherent vortical structures are
clearly visible behind the grid in the computational and experimental results. The
structures, shed by the grid elements, are convected downstream, merge relatively
quickly, and, through their interaction, generate turbulence, which reaches a maximum
at a streamwise distance equal to a few times the mesh size. Owing to the grid geometry
difference, the vortical structures shed by the square elements are different from those
shed by the bars. Thus, one could investigate to what extent this difference, which is
analogous to different initial conditions in homogeneous decaying turbulence, affects
the decay of turbulence.

Figure 3(c) suggests that turbulence, produced in the region 0 <x/M < 5 through
the interaction of these structures, is high in the region 5 <x/M < 10 and decays quite
rapidly as x/M increases, which is illustrated in figure 4, showing the velocity field in
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Figure 5. Iso-surface of the spanwise component of the vorticity in the (x, y)-planes
(a) between two rows of grid elements, (b) behind a row of grid elements.

the (z, y)-plane at x/M = 5, 20, 40 and 60. This figure clearly indicates that the v and
w fields are statistically similar (as expected due to the symmetry of the problem) and
thus the usual assumption v′2 = w′2 (v and w are velocity fluctuations in the y- and
z-directions, respectively, and the prime denotes the root mean square) is justified, at
least for symmmetrical grids such as used here. Notice the decrease in the coherence
of the vortical structures by the downstream distance, accompanied by an apparent
growth of the length scale.

Figure 3 also reveals that the velocity field is likely to be highly inhomogeneous
behind the grid to some distance downstream. This is clearly visible in the iso-contours
of one transversal component, ωz, of the vorticity, taken in the (x, y)-plane between
two rows of grid elements and behind one row, shown in figure 5. The map of ωz

indicates that relatively strong coherent vortical structures are generated around the
grid elements and interact quickly as indicated by the division of the iso-contours.
Considering that a similar mechanism occurs in the (x, z)-plane, one can easily infer
the relatively strong three-dimensional character of the flow behind the grid resulting
in a highly inhomogeneous velocity field. This feature is also visible in figure 6, where
iso-surfaces of the streamwise component, ωx , of the vorticity are represented. The
view in the (z, y)-plane in figure 6 shows that ωx is mainly located behind each
grid element, while the three-dimensional view indicates that ωx is produced slightly
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Figure 6. Iso-surface of the streamwise component of the vorticity (a) in the (z, y) and (b) in
a three-dimensional view (ωx = −0.015, 0.015).

downstream of the grid than ωz and ωy (see figure 5). This is clearly related to the
grid geometry. The fact that the grid is made of isolated floating elements results in
more production of the transverse components than the streamwise component. As
the (z, y) and the 3-D views in figure 6 represent the same ωx field, they reveal that
the upstream conditions are still felt at x/M of about 6, as illustrated by the relatively
regular pattern of the packets of ωx in the plane (z, y).

Finally, iso-surfaces of ω2, the square of the instantaneous vorticity, are shown
in figure 7. Around the grid elements the iso-surfaces are highly coherent and have
length scale of the order of magnitude of the element size (note their cylindrical-like
form). However, at about x =M , they start breaking up due to their interaction, and
then burst into a large number of smaller surfaces. Thus, the turbulence production
mechanism for the present grid appears to consist of the generation of vorticity ‘tubes’,
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Figure 7. Iso-surfaces of ω2 behind the grid.

followed by their strong interaction. The whole process takes place over a distance of
x/M about 5.

3.2. Statistics

Figure 8 shows the decay of u′2/U 2
0 , v′2/U 2

0 , w′2/U 2
0 and q ′2/U 2

0 = (u′2 +v′2 +w′2)/U 2
0 ,

averaged in time and space (y- and z-directions). As noted in the previous section, v′2

and w′2 are identical and only one of the two velocity components (v or w) will be
considered for the statistical analysis. The experimental data of Lavoie et al . (2005;
RM =10 000) are also shown for comparison.

The calculated ratios, while being higher in magnitude than the experimental data,
reproduce the expected result of grid-turbulence decay, which is u′2 > v′2. Just behind
the grid, u′2 is much stronger than v′2 and w′2 indicating that the longitudinal
component of the velocity fluctuations receives more energy than the transverse ones.
Notice that the location of the maximum of u′2 is at x/M =1, while the maximum of
v′2 is reached only at x/M = 2.9. This maximum shift results in a perceptible bump
in the q ′2 distribution at x/M of about 6–8. This bump is also observed in DNS
data of decaying homogeneous isotropic box turbulence in a periodic box (Antonia
& Orlandi 2004). It would be of interest to compare the variations of u′2 and v′2 in
the region x/M < 3 with that of a grid made of bars. The difference between u′2 and
v′2, when the latter has started to decay, is maintained throughout the energy decay.

The distributions appear to be consistent with a power-law decay (q ′2 ∝ ((x −
x0)/M)n or u′2 ∝ ((x − x0)/M)n, x0 is a virtual origin) for x/M > 40. A linear curve
fit to the q ′2 distribution for x/M > 40, yields a decay exponent n of about −1.53.
However, when plotted on a larger scale, none of the four curves presents a clear
straight line region (this is also observed with the data of Lavoie et al . 2005). This
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Figure 8. Decay of the turbulent kinetic energy (solid line) and its components (- - -,
u′2; −·−, v′2; · · ·, w′2) downstream of the grid. Symbols: experiments (Lavoie et al . 2005),
× , u′2; �, v′2.

makes the curve fitting with a straight line rather inaccurate, which may yield an
erroneous value of n. To determine whether a straight line region does exist, the
function dlog(q ′2)/dlog(x) (that is equal to the exponent n) was plotted (not shown
here) between x/M = 50 and 70. It was found that n appeared to increase; the
variation is from −1.67 at x/M = 50 to −1.27 at x/M = 70. It is important to note
that while no real attempt was made to determine an effective origin, x0/M , required
to properly estimate the power-law exponent, it was observed that the variation of n

could be reduced by setting x0/M to different values; when x0/M = −1.5 (the selection
of this particular value is explained later), n varied between −1.5 at x/M = 40 and
−1.25 at x/M = 70. Common values of n found in the literature range between
−1.15 and −1.35 (Mohamed & LaRue 1990). Several causes can simultaneously
affect n. The relatively low value of the Reynolds number RM , the grid solidity (the
present one, 25%, is smaller than that found in the literature, 30% to 45%), the
grid geometry, the estimate of x0/M (this is perhaps the most critical factor; on
the effects of the virtual origin on n (see also Mohamed & LaRue 1990), and the
possibility that an equilibrium similarity has not been reached, may all contribute
to produce different n between different sets of data of grid-generated turbulence.
The relatively small number of grid elements may also affect the decay rate. Since
the work of Corrsin and co-workers, it is accepted that energy of grid-generated
turbulence does not decay correctly unless there are enough grid elements, typically
20 or more across the flow. George et al . (2001) argued that ‘crowding turbulence
into too small a space (physically and computationally) will result in a decay rate
higher than in a corresponding homogeneous turbulence’. This may be the case in the
present simulation and further simulation with more grid elements should be carried
out.
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The ratio u′2/v′2 for x/M > 20 is less than 1.2, which is below the range of the
values found in the literature for grids made of bars (this ratio is about 1.45 for the
data of Lavoie et al . 2005a). Again the reasons mentioned above could explain this
difference.

The streamwise variation of the integral length scale, L, Taylor and Kolmogorov
microscales (λ and η, respectively) and the Reynolds number Rλ are computed and
presented in figure 9 (the length scales are normalized by M). The Rλ experimental
data of Lavoie et al . (2005) are included for comparison. Here λ is equal to λu, the
Taylor microscale based on the longitudinal velocity fluctuation. Both L and λ were
computed using their definitions

L =

∫ ∞

0

Buu(r) dr, (3.1)

1

λ2
=

1

2

(
d2f

dr2

)
r=0

, (3.2)

and the isotropic relations for L and λ

Liso = λ
Rλ

30
, (3.3)

1

λ2
=

1

2u′2

(
du

dr

)2

r=0

. (3.4)

In the above equations, Buu(r) = 〈 u(x)u(x + r 〉)/u′2, r is the streamwise separation,
and f = Buu(r) is the longitudinal velocity autocorrelation function; the brackets 〈 . 〉
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x/M = 20 x/M = 40 x/M = 60

Ly/L 10 5.84 4.8
L/�x 7.25 12.5 15.13
λ/�x 4.5 6.05 7.34
η/�x 0.23 0.38 0.46
Rλ 61.2 44.6 40.6

Table 1. Ratios L/�x and η/�x and Rλ; Ly is the lateral size of the computational domain.

denotes ensemble averaging and the overbar time averaging. Gamard & George
(2000) called the length scale Liso in equation (3.3) the pseudo-integral scale (it is
defined as u′3/ε). They argued that only in the limit of an infinite Reynolds number
is this scale proportional to L.

Once turbulence is generated, it decays in a typical fashion: the Reynolds number
decreases (Rλ = 40 at x/M =70) and the turbulence length scales (L, λ and η) increase;
the values of L/M , λ/M and η/M vary from 0.8, 0.5 and 0.027 at x/M = 20 to 1.67,
0.8 and 0.05 at x/M =60, respectively. The relatively high values of Rλ just behind
the grid reflect the high energy transfer resulting from the interactions between the
vortical structures shed by the grid elements (as seen in § 3.1). Of course, due to
their interaction these turbulence-generating large structures lose energy and generate
smaller structures, hence the reduction of Rλ as x/M increases.

Interestingly, while both expressions for λ, (3.2) and (3.4), yield virtually the same
values, the integral length scale L obtained with its definition (3.1) differs markedly
from Liso. This is exactly as Gamard & George (2000) have pointed out, and is a
consequence of the low Reynolds number and the absence of an inertial subrange in
the present data (see the spectra plots in figures 16–19). To discuss this difference,
ratios Ly/L (Ly is the lateral length of the computational domain), L/�x, η/�x and
Rλ for x/M = 20, 40 and 60 are reported in table 1. The table shows that the ratio
of the lateral size of the computational domain to L decreases by a factor two when
x/M increases from 20 to 60; at x/M = 40 this ratio is already down to about 6.
Note that while at x/M =20, Ly is about 10L, which may be enough to resolve for
the large scales, λ is only about 4 times the spatial step �x, which is certainly not
enough to properly capture the small-scale motions. In that respect it is not surprising
that (3.1) does not agree well with (3.3). The drop in the ratio Ly/L is unfortunately
accompanied by poorer resolution of the large-scale motions which are associated
with turbulence production. This in turn may imply that the large-scale motions may
not be adequately simulated or even be missing from the solution, possibly preventing
a proper estimate of the integral length scale L. This would corroborate Wang &
George’s (2002) discusion on how the missing of the large-scale motions affect the
energy and intergral scales.

To discuss further the problem of missing scales, the ratios L/λ and λ/η are
reported in figure 10. Since expressions (3.2) and (3.4) yield the same value of λ
(see figure 9), equation (3.4) was used for convenience. Expression (3.1) was used
for calculating L. While both the isotropic ((λ/η)iso = 301/4R

1/4
λ ) and the computed

values of λ/η show consistency in both their values (at x/M = 60, λ/η = 1.09(λ/η)iso)
and their trend, the same is not observed for L/λ. The computed ratio L/λ increases
between x/M = 20 and 40 then starts a slight decrease (not visible in the present
scale). Also the magnitude of L/λ and (L/λ)iso (L/λ= 1.54(L/λ)iso) differs noticeably.



26 L. Djenidi

0 10 20 30 40 50 60 70 80
100

101

102

x/M

L–
λ

λ–η

Equation (3.3)Equation (3.1)

Experiment

Figure 10. Variations of L/λ and λ/η downstream of the grid. Dashed line: present
calculation, solid line: (λ/η)iso = 301/4R

1/4
λ ); �, equation (3.1); �, equation (3.3); the small

filled circles are the λ/η data of Lavoie et al . (2005).

This observation tends to confirm that the large scales do suffer from boundary
condition effects (i.e. the limits of the lateral size of the computational domain).
On the other hand, the smaller length scales appear to be less influenced by such
constraints. Furthermore, the resolution of these small scales increases with x/M as
is shown in table 1.

The seemingly constant value of L/λ has to be treated with caution. It is commonly
thought that this ratio decreases as x/M increases unless Rλ remains contant.
George’s (1992) analysis suggests that the ratio remains constant. Unfortunately, the
present data cannot provide a definitive conclusion, since L is not properly resolved.
More extensive simulation with a larger computational domain should be carried
out.

The statement that the small-scale motions may be resolved can be checked with
λ. A requirement for a power decay is, for example,

q ′2

U 2
0

= A

(
x

M
− x0

M

)n

, (3.5)

where A is a constant of proportionality and n is constant. Since for isotropic
turbulence,

ε = −1

2
U0

dq ′2

dx
= 10ν

q ′2

λ2
, (3.6)

it follows that

λ2 = −20νM

nU0

(
x

M
− x0

M

)
, (3.7)

The value of n can be inferred from the plot of dλ2/dx, which should be a constant
and is shown in figure 11. If one assumes that, within a small variation (±5%), dλ2/dx
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Figure 11. Dependence of λ2/M2 and dλ2/dx on x/M .

presents a plateau over a limited region (40 < x/M < 60; see figure 11b), the inferred
value of n is −1.12. It is interesting to note that this value is close to that (−1.17)
for the DNS data of deBruyn Kops & Riley (1998), once corrected for the missing
large-scale motion (Wang & George 2002). This value of n yields an estimate of x0/M

of about −1.5. Using this in (3.5) produces an exponent value n of about −1.3, which
is in contrast with the value of −1.53 originally obtained, but still quite different from
−1,12. The fact that the value of n obtained with (3.7) differs from that estimated
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with (3.5) highlights one particular problem that simulations as well as experiements
may face. The problem is related to the assumptions that a power law does exist
and n is indeed constant. The former assumtion may prove to be critical in some
instances. For example, while figure 11(a) would suggest that λ2/M2 is proportinal to
x/M , figure 11(b) clearly shows that it is not strictly true. This observation illustrates
vividly the difficulty one can face in assessing the decay of isotropic turbulence. In
particular, it points to the need for caution when fitting a power law to data which,
for various reasons, may not reflect the true decaying state of isotropic turbulence.

To illustrate that one can easily draw wrong conclusions on the decay exponent
n, another way to assess the existence of a power-law decay for isotropic turbulence,
which does not require knowledge of x0/M , is presented next. If a truly isotropic
turbulence decays as a power law, then both

λ2 = −B

(
x

M
− x0

M

)
, (3.8)

where B is a constant of proportionality, and expression (3.5) are valid simultaneously.
One can then write

q ′2

U 2
0

= Cλ2n (3.9)

with C a constant (its unit is such that the ratio is dimensionless). Not only should the
exponent n be deducible from a log-log plot, but also a region satisfying a power-law
decay should be visible, if indeed such a region does exist for the present computation.
Figure 12 shows q ′2/U 2

0 versus both (x/M − x0/M) and λ2 in a log-log scale. The
value −1.5 for x0/M was used for consistency between expressions (3.5) and (3.9). A
region where both expressions (3.5) and (3.9) would seem to be compatible may be
perceptible for (x/M − x0/M) > 50, suggesting the possible existence of a power-law
decay region. However, it was found above that (3.5) does not yield the same n value
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Figure 13. Decay of the turbulent kinetic energy dissipation rate, ε. Solid line: εtrue, dashed
line: εiso; symbols: experiment (Lavoie et al . 2005).

as (3.7). This suggests that either a power law is not well-satisfied or only on a very
limited range; both cases make the determination of n difficult. The reasons for this,
at least for the present simulation, are likely to be related to the mesh resolution
and computational size effects, which would corroborate the arguments of Wang &
George (2002).

Quite remarkably, the decay of the turbulent kinetic energy dissipation rate,

εtrue = ν
∂ui

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)

(figure 13) appears to be consistent with the decay of q ′2/U 2
0 , i.e. ε ∝ (x/M −x0/M)nε .

The dissipation power-law decay exponent nε is estimated to be −2.40 (when x0/M

is set to −1.5), yielding a value of n ( = nε − 1) of −1.40, not very different to the
value −1.3 obtained from (3.5) (when x0/M = − 1.5). The locally isotropic value of
ε(εiso = 30νu′2/λ2), is also shown for comparison. It is quite encouraging to note that
the computed εtrue follows the theoretical distribution εiso; this adds some confidence
to the present simulation, at least for the solution of the small scales: it indicates that
the present grid resolution is satisfactory for calculating ε. However, as expected and
already observed, isotropy is not satisfied. Not surprising too, the computed values of
ε are higher than the experimental data, which is consistent with the data of figure 8.

Figure 14 shows the x-variations of the velocity derivative skewness, S, flatness, F ,
and the product SRλ . Results from the experiment of Lavoie et al . (2005) are also
shown. At x/M =60, F = 3.35, and S = −0.251; for the experiment, these values are
4.2 and −0.47, respectively. Notice that the seemingly constant value of the product
SRλ is consistent with an apparant increase of S and decrease of Rλ. This would
be in agreement with George’s (1992) theory but would contradict measurements (as
for example seen in the data of Lavoie et al .). Also, direct numerical simulations
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Figure 14. Velocity derivative skewness, S, flatness, F , and product SRλ. Lines: simulation,
symbols: experiment (Lavoie et al . 2005).

of decaying homogeneous and isotropic turbulence in a periodic box (Wray 1998;
Antonia & Orlandi 2004) and measurements in grid turbulence (Zhou et al . 2000)
indicate that S reaches a constant value (about −0.55). Since the present mesh
resolution �x is only, at best, 2η, and the grid resolution requirements for a good
estimate of the velocity derivative skewness are much more severe than those for
the estimates of λ and ε, more simulations are required at a finer resolution (say
�x =0.25η) to discuss further this rather controversial issue.

An important consequence of the relatively small values of Rλ in the region
20 <x/M < 60 is the non-existent inertial range, as seen in figure 15 showing the
second-order streamwise velocity structure function δu2 at x/M = 20, 40 and 60. Here

δu2 = 〈u2(x + r) − u2(x)〉. (3.10)

Also shown are δu2 and δq2 computed from the time series (at x/M = 60; Taylor’s
hypothesis, r = U�t , was used to convert time separation into space separation) and
δq2 of Lavoie et al . (2005). The r2/3 straight line represents the inertial range. The
computed data do not show a visible inertial region. Note that the data tend to
collapse in the dissipative range characterized by the slope 2. As already mentioned,
the grid resolution is not fine enough to resolve the scales r � η. The shift observed in
the data for x/M =20 is likely to result from the relatively poor grid resolution at this
location. Notice that from the time series the smallest separation is r/η =0.1. This is
because, while the mesh resolution is larger than η, the simulation time step (�t = 1
in the time lattice unit) is much smaller than the Kolmogorov time scale (τK = 750�t

at x/M = 60). Remarkably, δu2 and δq2 follow the r2 law well.
Perhaps the best way to assess the effects of the grid resolution on the simulation, at

both large and small scales, is through the spectra. Figure 16 and figure 17 show the
one-dimensional energy spectra, E(kη), and the longitudinal one-dimensional spectra,
E11(kη), at x/M = 20, 40 and 60, where k is the longitudinal wavenumber k =2πf/U0.
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equation (3.11) with β = 3.16 and 12.84, respectively.
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Also shown are E(kη) and E11(kη) of Comte Bellot & Corrsin (1971, U0t/M = 171)
and E11(kη) of Lavoie et al . 2005). The theoretical energy spectra of Pope (2000) for
high wavenumbers are also included:

E(kη/η)ν2
K = C(kη)−5/3fη(kη) (3.11)

where

fη(kη) = exp
{(

−β
{[

(kη)4 + c4
η

]1/4 − cη

})}
(3.12)

νK is the Kolmogorov velocity, C =1.16, cη = 0.4 and β = 3.16 and 12.84. The values
of C and β differ from those given by Pope to fit the present results.

While the calculated spectra present similar features to those observed in the
experiment, several comments are nevertheless required. First, as expected the inertial
region is non-existent in the calculated spectra. Secondly, the spectrum at x/M = 20
differs from those at x/M = 40 and 60 at both ends of the spectrum. This deviation
reflects mainly two effects: (i) low grid resolution and (ii) finite limits of the lateral
sizes of the computation. This is well-illustrated in table 1 shown earlier. It was
observed that as the distance x/M increases the grid resolution improves for the small
scales, but deteriorates for the large scales.

Thus, at x/M = 20, the resolution is better for the low wavenumbers, but poorer
at x/M = 40 and 60 in the high wavenumbers. The relatively strong drop in the
spectrum for x/M = 20 is due to the LES scheme. Indeed, the dissipation induced
by the LES is felt early in the spectrum at this longitudinal location because of the
relatively poor grid resolution. At x/M = 40 and 60, the improved grid resolution
yields better spectra in the high-wavenumber region. On the other hand, the finite
limits of the lateral sizes of the computation affect the simulation at these stations,
which contaminates the resolution of the large scales.
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Figure 18. One dimensional energy spectra E(k) normalized by u2λ at x/M = 20 (——),
40 (· · ·) and 60 (−·−).
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Figure 19. Longitudinal one dimensional spectra E11(k) normalized by u2λ at x/M = 20
(−·−) and 60 (· · ·).

The effects of the resolution of the smallest scales on the simulation can be further
assessed by plotting E(k) and E11(k) normalized with λ and u′2 (Taylor’s variables).
Figures 18 and 19 show the spectra thus normalized. A good collapse is observed
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over the resolved scales of the spectra. George (1992) reported a similar collapse in
the experiemental data of Comte-Bellot & Corrsin (1966) and the DNS results of
Antonia & Orlandi (2004). Apart from the fact that the collapse may be consistent
with a self-preserving state of the decaying turbulence (George 1992), it indicates that
the limitation of the grid resolution for the small scales is not too critical for the
present simulation.

4. Concluding remarks
A direct numerical simulation of grid-generated turbulence has been carried out

using the lattice-Boltzmann method. The turbulence-generating grid was made of
floating square elements, yielding a solidity of 0.25. The simulation reproduced quite
well the results obtained in grid turbulence generated in laboratory. Furthermore, it
illustrated quite vividly the major problems that both numerical and experimental
studies can have in the study of the decay of (approximately) homogeneous isotropic
turbulence. For example, it was found that extra care should be taken when one tries
to assess the existence of a power-law decay. In that regard, the results support the
view (see Wang & George 2002) that the best objective method for this assessment
is to determine if dλ2/dx is constant; the value of this constant yields the power-
law decay exponent unambiguously. Indeed, for a power-law decay to exist, λ2 must
increase linearly with x (the downstream distance).

The present LBM simulation showed, at least in the numerical studies, that the
limitations of the simulation, namely the mesh resolution and boundary conditions,
can yield incorrect or only approximate results. These limitations were clearly visible in
the turbuence kinetic energy and the longituginal velocity spectra. By not accounting
for the large-scale motion (the computational domain is not large enough in terms
of integral length scale) or resolving the small-scale adequately (the mesh step was at
best two times the Kolmogorov length scale), both ends of the spectra were poorly
solved. This has implication for the decay of turbulence. For example, one may argue
that, unless care is taken, fitting of a power law to data may produce results which
reflect the limitations of the simulation and not the true decay.
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